Enhanced hydrogen production from waste activated sludge by cascade utilization of organic matter in microbial electrolysis cells.
نویسندگان
چکیده
Fermentative hydrogen production from waste activated sludge (WAS) has low H2 yield because WAS contains limited amounts of carbohydrate suitable for use by hydrogen-producing bacteria. Here, augmentation of hydrogen production from WAS by microbial electrolysis cells (MECs) was implemented. H2 yields of 3.89±0.39 mg-H2/g-DS (5.67±0.61 mg-H2/g-VSS) from raw WAS and 6.78±0.94 mg-H2/g-DS (15.08±1.41 mg-H2/g-VSS) from alkaline-pretreated WAS were obtained in the two-chamber MECs (TMECs). This was several times higher than yields obtained previously by fermentation. Single-chamber MECs (SMECs) with low internal resistance showed a H2 production rate that 13 times that of TMECs with similar H2 yield when alkaline-pretreated WAS was used. However, methanogenesis was detected after several batch cycles. A yield balance calculation revealed that carbohydrates were not the only substrates for electrohydrogenesis. Protein and its acidification products, such as volatile fatty acids are also responsible for a portion of H2 generation in MEC. Characterization of WAS in TMECs by three-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy with parallel factor analysis indicated that electrohydrogenesis reacted on the extracellular polymeric substances and intracellular substances of WAS. Cascade utilization of organic matter in MECs increased hydrogen production from WAS. MECs showed high hydrogen yield from WAS, fewer H2 sinks, and insensitivity to temperature. Optimizing MEC configurations and operation conditions and improving the pretreatment processes of WAS are necessary before practical application can take place on a large scale.
منابع مشابه
Microbial network for waste activated sludge cascade utilization in an integrated system of microbial electrolysis and anaerobic fermentation.
BACKGROUND Bioelectrochemical systems have been considered a promising novel technology that shows an enhanced energy recovery, as well as generation of value-added products. A number of recent studies suggested that an enhancement of carbon conversion and biogas production can be achieved in an integrated system of microbial electrolysis cell (MEC) and anaerobic digestion (AD) for waste activa...
متن کاملImprovement of Anaerobic Digestion of Sewage Sludge, Using Combined Hydrogen Peroxide and Thermal Pre-Treatment
The present study investigates the influence of individual and combined hydrogen peroxide and thermal pre-treatment of waste activated sludge on anaerobic digestion. For so doing, it employs anaerobic batch reactors in the mesophilic conditions. For comparison, soluble fractions of organic matter, biogas production, biochemical methane potential, removal of chemical oxygen demand (COD), and vol...
متن کاملImprovement of Anaerobic Digestion of Sewage Sludge, Using Combined Hydrogen Peroxide and Thermal Pre-Treatment
The present study investigates the influence of individual and combined hydrogen peroxide and thermal pre-treatment of waste activated sludge on anaerobic digestion. For so doing, it employs anaerobic batch reactors in the mesophilic conditions. For comparison, soluble fractions of organic matter, biogas production, biochemical methane potential, removal of chemical oxygen demand (COD), and vol...
متن کاملMultiple syntrophic interactions drive biohythane production from waste sludge in microbial electrolysis cells
BACKGROUND Biohythane is a new and high-value transportation fuel present as a mixture of biomethane and biohydrogen. It has been produced from different organic matters using anaerobic digestion. Bioenergy can be recovered from waste activated sludge through methane production during anaerobic digestion, but energy yield is often insufficient to sludge disposal. Microbial electrolysis cell (ME...
متن کاملThe significance of key operational variables to the enhancement of hydrogen production in a single-chamber microbial electrolysis cell (MEC)
Microbial electrolysis cell (MEC) is one of the promising and cutting-edge technologies for generating hydrogen from wastewater through biodegradation of organic waste by exoelectrogenic microbes. In the MECs, the operational parameters, such as applied voltage (Eap), anode surface area, anode-cathode distance, and N2/CO2 volume ratio have a significant impact on the hydrogen yield and producti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Water research
دوره 46 4 شماره
صفحات -
تاریخ انتشار 2012